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I. Introduction 

 PCA is a method for analyzing a set of spectra to see if they can be represented as 

linear combinations of a smaller number of component spectra.  This program 

implements PCA as described by Ressler (Environ. Sci. Technol.(2000) 34,950-958).  

The notation in the program is as used in that paper. 

 

II. Main screen 

 The program starts out by asking for unknowns, one at a time.  By default, files 

with extension e, b, bk3 or pca are shown in the file dialog.  To end, hit Cancel in 

the file-open dialog box.  After that, you see a screen which looks like that in Figure 1, 

except for the red labels. 

 You can also specify a database file (*.prm) of the same sort as is used in the 

Combination Fit program.  Such a file can look like this: 

#Ref=Greenrust_SO4_borch.e 
#Ref=fe_cr2feo4_xafs_tr_nico.e 
Ref=Augite FeXANES ITFA comp0.e 
Ref=Augite FeXANES ITFA comp1.e 
Ref=Augite FeXANES ITFA comp2.e 
Ref=Augite FeXANES ITFA comp3.e 
Ref = "" 

with everything after a # ignored.  This option is handy when dealing with large numbers 

of files. 

 This screen shot was taken with a demonstration dataset, each file of which was 

made by taking linear combinations of the same three references (Fe foil, Fe3O4 and 2-

line ferrihydrite) and then adding a small amount of noise.  This is therefore a highly-

idealized case in which PCA will tell us what we already know, that there are three 

components. 

 At the upper left is the list of paths you selected.  To the right of this is a set of 

checkboxes wired like radio buttons so you can only click one at a time.  This selects 

which unknown is plotted, along with its reconstruction from the chosen set of 



components and the residual thereof.  These data are shown on the graph to the right in 

white for the input data, green for the reconstruction and red for the residual. 

 Above the graph are four ‘badness-of-fit’ indicators.  Two of these are for the 

individual file shown in the graph, and the others are the average over the whole set.  

These quantities are defined as 2 2( ) /fit
i i iy y y−∑ ∑  and /fit

i i iy y y−∑ ∑ , with the 

index ranging over the points in an individual curve or the whole set. 

 The component list to the lower right shows the breakdown into the abstract 

components.  Note that these components are at best linear combinations of spectra 

corresponding to species in the unknowns and often don’t look much like EXAFS or 

XANES.  The first column in the list is the eigenvalues, whose squares represent the 

contribution to the data made by that particular component.  Next is the indicator (IND) 

value of Malinowski, a measure of the usefulness of adding in another component.  

According to the semi-empirical theory of errors in PCA, the last useful component is the 

one at which IND is a minimum.  The next column is a set of checkboxes showing which 

components are in the fit, according to the setting of the control to the left.  If you add all 

of them, as is the case when the program starts, the fit is perfect and perfectly 

meaningless. Here, we’ve added the first three.  Next is another column of checkboxes 

allowing you to select one component to be plotted on the graph at lower right.  This 

component is weighted by the eigenvalue, so insignificant components come out small.  

The contribution of each weighted component to the data being plotted in the upper graph 

is given by the column of numbers at the right edge of the components list complex.  If a 

component is not selected for inclusion, its contribution to the whole is zero, regardless of 

the number in the contributions column.  You can save each individual component to a 

file (default extension cmp).  If you do a linear least-squares fit to one of the data files 

using these components as references, you will get the coefficients shown in the 

contributions column.  Thus, in the present example, the first data file (f1-0-0.e) fits to 

0.307*comp0-0.498*comp1+0.449*comp2, where comp i is the ith component. 

 The residual of the fit is shown in red on the top graph.  You can multiply it by a 

factor given by the setting of the Residual Magnification control, in this example, 10x.  

The cursor in the bottom (components) graph can be locked in X motion to that in the top 



graph, which can be useful for seeing which features on the data correlate with which 

ones in the components. 

 If you want to add a file to or drop one from the list, you can use the green buttons 

associated with the file list.  Use the index spinner to put at the top of the indicator the 

file you want to drop.  An added file goes on the bottom.  In any case, the number of 

components gets reset to the current number of spectra. 

 It should be noted that the method rarely works as well on real data as it does on 

this simulated data.  Don’t expect the residual to look like pure white noise even when 

you add the right number of components.  In this example, the fourth and higher 

components all look like pure noise, while there’s obvious signal in the first three (not 

shown).   For real data, it’s not so obvious and one must look to the IND value and prior 

knowledge about what’s reasonable for the system. 

 The matrix of loadings (weights) may be saved by pushing the Save Amounts 

button.  This saves a tab-delimited text file whose first line is a list of the filenames of the 

spectra.  Succeeding lines give the weights for all the spectra in component 0, component 

1, etc.  The fits and components may also be saved by pressing the appropriate buttons.  

 

III. Target transformation 

 The PCA fit gives no indication of what the components actually represent.  One 

way of finding out is to use the target transformation.  This procedure takes a reference 

data file and removes from it everything which doesn’t look like something found in the 

unknowns.  This is done by making a linear least-squares fit of the reference to a 

weighted sum of components.  Thus, if the unknowns can be represented as mixtures 

containing the reference being tested, the target transformation will leave the reference 

spectrum unaffected.  Otherwise, the output won’t look like the input.  The screen in 

which this test is done is shown in Figure 2. 

 In this case, we have tested a reference which was not one of the three from which 

the simulated data were made.  The SPOIL value (a measure of how much the target 

transformation disagrees with the input) is much greater than the 0-3 one expects to see 

for a reference which is really represented in the data, and the reconstruction looks 

nothing like the original.  In most real cases, it’s not so obvious that a reference doesn’t 



belong, which is why the SPOIL value is computed.  There are buttons which allow you 

to save the transformed file (default extension trg) and to read in another candidate 

reference. 

 It is assumed that the test reference data covers the same or almost the same range 

as the data from the unknowns.  There is a method for doing the target test which lets one 

violate this assumption, but this program doesn’t do it. 

 

IV. Rotations  

 The abstract components are usually not very informative about what's going on 

physically.  The weights given to spectra usually  include lots of negative numbers.  

When the data really are describable as a sum of signals from actual species, the abstract 

components end up being weighted sums and differences of the  spectra from the species.  

For instance, if there are two components, the top one is an average and the bottom one a  

difference between species.  Thus, it's often useful to make some sort of intelligent choice 

of linear combinations.  One of these is the varimax rotation [Kaiser, Psychometrika 

23,187 (1958)].  This is an orthogonal rotation of the components so that the unknown 

spectra get assigned values for the weights which are as uncorrelated with each other, so 

that the information in Unknown #1 isn't repeated in the description of Unknown #2.  The 

varimax rotation maintains the orthonormality of the component basis, so that 
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eigenvalue for  component c.  This rotation is an alternate way of viewing the results and 

can be useful in classifying spectra into groups based on similarities in weightings. 

 A next step is Iterative Target Factor Analysis [see Scheinost, et. al., Physica 

Scripta T115, 1038(2005) and Rossberg, et. al, Anal. Bioanal. Chem. 376, 631(2003)], in 

which one tries to extract component spectra with some physical meaning.  The idea is to 

make a new basis set by doing linear combinations of the old so that each unknown is 

described as a sum of the new components with coefficients (weights) between 0 and 1.  

The starting point for this is the varimax solution.  This operation is not strictly a rotation 

because the orthonormality described above no longer holds.  For instance, XANES 

spectra all go from 0 at one end to 1 (if normalized) at the other, so the scalar product of 



two physical spectra can't be 0.  In any case, the result of ITFA is a set of spectra which 

often look very much like the underlying physical species, and a set of weighting factors 

which range between 0 and 1.  In the highly- idealized data used as an example, the actual 

spectra and recovered components are shown in Figure 3. 

 For some data sets, there is a presumption that the amounts of the components 

(loadings) should add up to 1 for each input spectrum.  The ITFA adj for sum=1 view 

rescales the ITFA components to make that happen, as nearly as possible.  Each ITFA 

component is multiplied by a scale factor chosen to minimize the mean-squared deviation 

of the sums of the loadings from 1.  For post-edge normalized XANES data (*.e files), 

this procedure makes the edge jump of the ITFA components, which look like XANES 

spectra, equal to 1. 

 These alternate views may be selected by using the View switch on the left side of 

the component-selection area.  The displayed loadings and components change according 

to which view is selected.  Note that for the Varimax and ITFA views, the components 

depend on the number displayed.  The underlying eigenvectors seen in the Abstract view 

don't change, but the weighted sums you get as components do. 

 There is a version of ITFA in which one can do what is essentially target 

transformation on a reference whose data range does not inc lude all the range available 

for the unknowns, the result of which is that you 'fill in' the missing data from the 

information in the unknowns.  This program does not perform this version at this time.



 

 
Figure 1.  The main PCA screen, for a demonstration set of data.  The fit has been limited 
to the first three components, the second one of which is shown in the component graph.  
The first data file is plotted along with a fit and the resulting residual, which is magnified 

10x. 
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Figure 2.  The target-transformation screen.  The reference being tested is not one of the 
ones from which the demonstration data set was created.  Therefore, the SPOIL value is 

high and the transformed data don’t resemble the input. 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 3.  The actual spectra (solid lines) for the test data  set and the components 
recovered by ITFA (dashed).  The components are Fe foil (white), Fe3O4 (red) and 

ferrihydrite (green). 


